La teoría de la informática incluye áreas de la matemática discreta relevante a la computación. Está altamente relacionada con teoría de grafos y lógica. Dentro de la teoría de la informática se encuentra la teoría de algoritmos para problemas matemáticos. La computabilidad estudia lo que puede ser computado y tiene lazos fuertes con la lógica, mientras que la complejidad estudia el tiempo que se demora en hacer computaciones. La teoría de autómatas y los lenguajes formales se relacionan de manera cercana con la computabilidad. Las redes de Petri y álgebra de procesos se usan para modelar sistemas computacionales, y métodos de la matemática discreta se usan para analizar circuitos VLSI. La geometría computacional aplica algoritmos a problemas geométricos, mientras que el análisis digital de imágenes los aplica a representaciones de imágenes. La teoría informática también incluye el estudio de tópicos de informática continua.
Teoría de la Información
La Teoría de la Información se ve involucrada en la cuantificación de la información. Cercanamente relacionado a esto es la teoría de codificación, que es usada para diseñar métodos de transmisión y almacenamiento de datos eficientes y confiables. La teoría de la información también incluye tópicos continuos tales como señales análogas, codificación análoga y cifrado análogo.
Lógica
La lógica es el estudio de los principios del razonamiento valido y la inferencia, como también de la consistencia, solidez y completitud. Por ejemplo, en la mayoría de los sistemas en la lógica, la ley de Peirce, (((P→Q)→P)→P) es un teorema. En lógica clásica, puede ser fácilmente verificado con una tabla de verdad. El estudio de las demostraciones matemáticas es particularmente importante en lógica y tiene aplicaciones en la demostración automática de teoremas y verificación formal de software.
Las formulas lógicas son estructuras discretas, como lo son las demostraciones, las cuales forman árboles finitos, o más generalmente, estructuras de grafos acíclicos (en cada paso de inferencia combinando una o más ramas de premisas para dar una sola conclusión). Las tablas de verdad de formulas lógicas usualmente forman un conjunto finito, generalmente restringido a dos valores: verdadero y falso, pero la lógica puede tener valores continuos, por ejemplo en la lógica difusa. Los conceptos como árboles de demostraciones o derivaciones infinitas también han sido estudiados, por ejemplo en la lógica proposicional infinitaria.
Teoría de conjuntos
La teoría de conjuntos es la rama de la matemática que estudia conjuntos matemáticos, los cuales son colecciones de objetos, tales como {azul, blanco, rojo} o el conjunto infinito de todos los números primos. Conjuntos parcialmente ordenados y conjuntos con otras relaciones tienen aplicación en muchas áreas.
En la matemática discreta, los conjuntos numerables (incluyendo conjuntos finitos) son el principal objeto de estudio. El inicio de la teoría de conjuntos generalmente se relaciona con el trabajo de Georg Cantor, haciendo distinción entre diferentes tipos de conjuntos infinitos, motivado por el estudio de las series trigonométricas. El desarrollo más profundo en la teoría de conjuntos infinitos está fuera del alcance de la matemática discreta. De hecho, el trabajo contemporáneo en teoría descriptiva de conjuntos hace uso extenso del uso de la matemática continua tradicional.
Combinatoria
La combinatoria es la rama de la matemática que estudia colecciones finitas de objetos que pueden ser combinados u ordenados. La combinatoria enumerativa se ocupa, en particular, del "recuento" de los objetos de dichas colecciones.
La combinatoria analítica se concentra en la enumeración de estructuras combinatorias utilizando herramientas de análisis complejo y teoría de probabilidad. En contraste con la combinatoria enumerativa, que usa fórmulas combinatorias explicitas y funciones generadoras para describir los resultados, la combinatoria analítica se enfoca en obtener fórmulas asintóticas.
La teoría de diseño es el estudio de diseños combinatorios, que son clases de subconjuntos con ciertas propiedades numéricas de intersección. La teoría de particiones estudia varios problemas asintóticos y de enumeración relacionados con particiones enteras, y está relacionada con series q, funciones especiales y polinomios ortogonales. Originalmente una parte de teoría numérica y análisis, la teoría de particiones es considerada una parte de combinatoria, o un área independiente.
Teoría de Grafos
La teoría de distribuciones discretas trata con eventos que ocurren en espacios de muestra numerables. Por ejemplo, conteos como el número de aves en una bandada solo pueden tener valores naturales {0, 1, 2,...}. Por otra parte, observaciones continuas como los pesos de estas aves se pueden representar mediante números reales, y típicamente serian modelados por una distribución de probabilidad continua, como por ejemplo, la distribución normal. Distribuciones continuas pueden ser utilizadas para aproximar discretas y viceversa. Para situaciones en las cuales los valores posibles son altamente restringidos en su variabilidad, como por ejemplo en dados o cartas, calcular las probabilidades simplemente necesita de combinatoria enumerativa.
Teoría de números
La teoría de números principalmente tiene que ver con las propiedades de los números en general y, particularmente, de los enteros. Tiene aplicaciones en la criptografía, criptoanálisis y criptología, particularmente en lo que refiere a números primos. Otros aspectos de la teoría de números incluye la teoría geométrica de números. En la teoría analítica de números, técnicas de matemática continua también son utilizadas.
Álgebra
Las estructuras algebraicas ocurren discreta y continuamente. Como ejemplos de álgebras discretas están: el álgebra booleana, utilizada en circuitos digitales y programación, álgebra relacional, utilizada en bases de datos; grupos, finitos y discretos, así como anillos y campos son importantes en la teoría de códigos
Geometría
La geometría discreta y combinatoria tratan las propiedades combinatorias de colecciones discretas de objetos geométricos. Un antiguo tópico en la geometría discreta es el recubrimiento del plano. La geometría computacional aplica algoritmos a problemas geométricos.
No hay comentarios:
Publicar un comentario